Unit 9 - Solutions

- 1. A solution is a homogeneous mixture.
- 2. Solute is the dissolved substance in a solution. Solvent is the dissolving medium in a solution.
- 3. Molarity = (moles of solute)/(L of solution)
- 4. Mole fraction = X_{solute} = (moles solute)/(moles of solute + moles solvent)
- 5. Dilution Equation $M_1V_1 = M_2V_2$
- 6. Heat of solution is the amount of heat energy absorbed (endothermic) or released (exothermic) when a specific amount of solute dissolves in a solvent.
- 7. To make a solution it must go through the following steps:
 - 1) overcome attractions btwn solute particles (spread solute apart) = endothermic ΔH_{solute}
 - 2) overcome attractions between solvent molecules (spread solvent apart) = endothermic $\Delta H_{solvent}$

3) form new attractions btwn solute particles and solvent molecules (combine) = exothermic ΔH_{mix} Therefore the overall $\Delta H_{solution} = \Delta H_{solute} + \Delta H_{solvent} + \Delta H_{mix}$

- 8. When (solute-solvent attractions) < (solute-solute + solvent-solvent) then solution will only form if the energy difference is small enough to be overcome by increase in entropy.
- 9. "Like dissolves like" polar dissolves best with polar, nonpolar with nonpolar.
- 10. Raoult's Law: $P_{\text{solution}} = X_{\text{solvent}} P^{\theta}_{\text{solvent}}$
- 11. VP of a solvent in a solution is always lower than the VP of the pure solvent. Solute particles replace some of the solvent molecules at the surface. Rate of vaporization is reduced, amount of vapor reduced.
- 12. Vapor pressure of the solution is directly proportional to the amount of solvent in the solution.
- 13. Vapor pressure of liquid-liquid solutions where both are volatile: $P_{Total} = X_A P_A^{\theta} + X_B P_B^{\theta}$
- 14. Ideal solutions don't exist in real life, some come close. Negative deviations = lower than predicted vapor pressure = strong attraction between solvent and solution. Positive deviations = higher than predicted vapor pressure = weak attraction between solvent and solution.
- 15. Dissociation of ionic compounds impacts vapor pressure more than nonionic solutes because one compound breaks into more than one particle and vapor pressure is affected by the number of particles.
- 16. The following ions are always soluble: alkali metals, ammonium, acetate, chlorate, nitrate, perchlorate
- 17. Solubility of most solids increase with increasing temp and increased surface area of the solid. Solubility of most gases decrease with increase temp and increase with increased pressure above the solution.
- 18. Solubility is measured at specific temps and pressures. At a specific temp/pressure Saturated solution has the solute and the solvent in dynamic equilibrium, cannot dissolve more. Unsaturated solution has less solute than when saturated. Supersaturated has more solute than saturated (you make this by heating solvent up, dissolving a lot of solute, then slowly cooling it down)
- 19. The presence of a common ion will decrease the solubility of the solid.
- 20. Electrolytes conduct electricity when aqueous. Nonelectrolytes do not conduct electricity when aqueous.
- 21. Colligative properties only depend on the number of solute particles present, not the identity of the particles. Boiling point elevation, freezing point depression, osmotic pressure. More particles, more of an impact.

Credit: Dan Reid

Unit 9 - Solutions

- 1. Give an example of a homogeneous solution.
- 2. Identify the solute and solvent in a glass of sugar water.
- 3. What is the molarity of 30g of salt dissolved in 500mL of water?
- 4. What is the mole fraction of calcium chloride if there are 25 grams dissolved in 300mL of water?
- 5. What equation would you use if you wanted to make 500 mL of a 0.4 M solution from a stock bottle of 6 M solution?
- 6. The Δ H_{solution} for NaOH is -445.1 kJ/mol. How much heat is released when 45g of NaOH is dissolved?
- 7. When making a solution it was determined that the $\Delta H_{solute} = 35 \text{ kJ/mol}$, $\Delta H_{solvent} = 28 \text{kJ/mol}$, and $\Delta H_{mix} = -81 \text{kJ/mol}$. What is the $\Delta H_{solution}$ and is the overall process endo or exothermic?
- 8. If the (solute-solvent) attractions are weaker than the (solute-solute + solvent-solvent) attractions, will Δ Hsolution be endo or exothermic? What is driving this mixing process?
- 9. Which substance is most likely to dissolve in water and why? CH₄, CO₂, CF₃Br
- 10. The vapor pressure of an aqueous solution is 24.9 mmHg. What is the mole fraction of solute in the solution if the vapor pressure of pure water is 25.756mmHg?
- 11. Which is predicted to have a lower vapor pressure? A salt solution with 20g of salt, or 40g of salt?
- 12. As the amount of solvent increases in a solution does the vapor pressure increase or decrease?
- 13. A as a vapor pressure of 35mmHg. B has a vapor pressure of 15mmHg. If a solution is 2moles of A and 8 moles of B, what is the total vapor pressure?
- 14. Which pair would make the more ideal solution? CH₄ and I₂, or H₂S and CH₃Br. Why?
- 15. Which would impact the vapor pressure of a solvent more? C6H12O6 or NaCl? Why?
- 16. What are the always soluble ions?
- 17. Describe how to increase the solubility of a solid, and how to increase the solubility of a gas.
- 18. Solution X is considered saturated when it has dissolved 45g in 500mL of water. If you have a solution of 80g in 1L is it a saturated, unsaturated, or super saturated solution?
- 19. If you are trying to dissolve CaOH, the presence of which ion(s) would decrease the solubility? Ca²⁺, OH⁻, NO₃⁻, NH₄⁺
- 20. Which will conduct electricity? H₂S of Li₂S? Why?
- 21. Which will impact the boiling point and freezing point more? CaCl2 or CaS?